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Abstract--The significance of low symmetry fabrics (monoclinic and triclinic) in magmatic rocks is studied using 
theoretical models describing the motion of rigid markers embedded in a slowly deforming ductile matrix. In 
agreement with Curie's Symmetry Principle, the development of these fabrics requires a non-coaxial strain-path. 
Simulations of monoclinic fabrics indicate that their characteristics depend on: (a) the strain regime and the 
amount of strain, and (b) the morphological composition of the population of rigid markers. 

Natural monoclinic fabrics contain precious information about the strain regime they result from: type of the 
non-coaxial strain-path involved (simple shear, non-coaxial flattening, etc.), orientation of its axes and sense of 
shear. The magnitude of the finite strain may eventually be estimated provided that the shape of the markers is 
precisely known. 

INTRODUCTION 

THE existence of low symmetry fabrics in magmatic 
rocks has long been recognized (Sander 1948). Accord- 
ing to this author, most megascopic magmatic structures 
are monoclinic: indeed they display a unique symmetry 
plane normal to a rotation axis (B-axis). Examples are: 
(a) lava flows with asymmetric profiles showing super- 
ficial rolls, folds and vortices, and (b) roll-folds around 
rotated inclusions. 

Instead of considering such large-scale structures, we 
shall discuss here the case of the pervasive preferred 
dimensional orientation (P .D.O. )  often displayed by 
magmatic rocks. In this paper, the term fabric refers to 
the bulk P.D.O.  of a given sample; in the same sample, a 
specific P .D.O.  or 'subfabric' may be defined for each 
different mineral or for different families of a given 
mineral. A precise knowledge of the fabric symmetry 
results from the statistical analysis of P .D.O.  and the 
construction of pole-figures (see for instance Weiss & 
Wenk 1985). Igneous rocks present  evidence of a large 
variety of fabrics and corresponding symmetries. We 
discuss here the case of low symmetry fabrics. 

According to Curie 's Symmetry Principle (Curie 
1894, Nicolle 1950, Paterson & Weiss 1961), a close 
relationship is expected between low symmetry fabrics 
and non-coaxial strain regimes. However ,  symmetry 
considerations alone cannot  account for the diversity of 
low symmetry fabrics--~specially monoclinic fabr ics--  
encountered in igneous rocks (Fig. 1). In order  to 
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explain this diversity, magmatic fabrics have been 
modelled using the equations of motion of rigid ellip- 
soids suspended in a slowly deforming ductile matrix 
(Jeffery 1922). The characteristics of the resulting fab- 
rics depend on: (a) the strain regime and the amount  of 
strain, and (b) the morphological  composition of the 
population of rigid markers.  In this paper  we present 
simulations of monoclinic fabrics resulting from differ- 
ent non-coaxial strain histories: (a) simple shear, (b) 

-r 

Fig. 1. Main kinds of low symmetry fabrics encountered in porphy- 
roid granitoids (120 measures of (010) planes of K-feldspar mega- 
trysts; modified from Fernandez 1982). M1, M2 and M4 are three 
common types of monoclinic pole-figures; dashed line: symmetry 

plane. T is a triclinic pole-figure. 
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non-coaxial flattening and (c) axial flattening followed 
by simple shear. 

The comparison of natural and simulated fabrics 
places severe constraints on the geometry of the flow 
regime governing the preferred orientation develop- 
ment. Ultimately, the magnitude of the finite strain may 
be estimated when the actual shape of the rigid markers 
is known. 

FABRIC SYMMETRY AND STRAIN REGIME 

Strain regimes 

Consider a set of orthogonal Cartesian axes X[ 
(i = 1,2,3) fixed in orientation. In this reference frame, 
the flow of the deforming magma may be specified by the 
velocity gradient tensor T' (Freeman 1985). If the nine 
components: 

T~ = dv'/dx; (1) 

of T' are constant with time, a steady flow or 'strain 
regime' is defined. In the following, we shall deal with 
isovolumetric strain (a condition satisfied by the relation 
T~t + T~2 + T~3 = 0). The strain regimes we consider 
below are depicted in Fig. 2 and their main character- 
istics are summarized in Table 1. 

General non-coaxial strain regimes may be described 
as combinations of a simple shear and a coaxial com- 
ponent (Ramberg 1975). They have a monoclinic sym- 
metry when the unique symmetry plane of the shear 
component (M for 'mirror' in Fig. 2) coincides with one 
of the symmetry planes of the coaxial component; other- 
wise, they have a triclinic symmetry. Similarly, the 
symmetry of polyphased strain histories is defined by the 
symmetry elements common to the successive strain 
regimes. 

Curie's Principle and the origin of low symmetry fabrics 

Curie's Principle governs the symmetry of causes and 
effects in physical phenomena and may be expressed as 
follows (Paterson & Weiss 1961): "Whatever the nature 
of the factors contributing to a deformation may be, the 
symmetry that is common to them cannot be higher than 
the symmetry of the deformed fabric, and symmetry 
elements absent in this fabric must be absent in at least one 
of the contributing factors", 
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Fig. 2. (a) Transformation of a unit cube during: (b) axial flattening; 
(c) simple shear; and (d) non-coaxial flattening. M is the symmetry 

plane of the non-coaxial strain regimes. 

Preferred orientations displayed by magmatic rocks 
usually result from the rigid rotation of phenocrysts 
suspended in their slowly deforming ductile matrix, 
whatever the meamng of this deformation is (magmatic 
emplacement, regional stress field, etc., Fernandez 
1984). In this context the contributing factors to the 
development of the final fabric are: (a) the shape of the 
crystals (or "markers"), (b) their initial distribution and 
(c) the deformation history (or 'magmatic flow'). 
Assuming the initial distribution to be isotropic, Curie's 
Principle implies that low symmetry P.D.O. are devel- 
oped in response to strain regimes---or polyphased 
strain histories---with a non-coaxial component. An 
additional requirement for the development of low sym- 
metry P.D.O. concerns the shape and/or the distribution 
of shapes of the markers; in the case of ellipsoidal 
markers, it is shown below that fabrics developed in 
response to simple shear are monoclinic when one of the 
following conditions is satisfied: 

(i) the markers are spheroids with various axial ratios 
n or shape coefficients K = (n z - 1)/(n 2 + 1); n is de- 
fined as the ratio of the length 2a of the revolution axis 

Table 1. Strain regimes and their symmetry 

Strain regime* Tensor Symmetry 

Axial flattening (c.) 

Simple shear (n.c.) 

Non-coaxial flattening (n.c.) 

T[1 = T~2 > 0 axial 
T~3 = -2Th 
T~3 = ~) (#0) monoclinic 

T]l = T-~2 > 0; T~3 = -2T{i monoclinic 
~3 = ~ (#0) 

*c., coaxial; n.c., non-coaxial. Only the non-zero components of the velocity 
gradient tensor are given. 
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divided by the length 2b = 2c of the two other principal 
axes; 

(ii) the markers are triaxial ellipsoids. 

BASIC EQUATIONS OF MOTION FOR RIGID 
PARTICLES 

Consider a triaxial ellipsoid of neutral buoyancy iso- 
lated in a deforming fluid and let X1, X2, 2(3 be three 
orthogonal axes coincident with the principal axes 2a, 
2b, 2c of the ellipsoidal particle and moving with them. 
The velocity gradient tensor T, referred to this co- 
ordinate system, may be divided into its symmetric part 
E and antisymmetric part R. The equations of motion 
referred to the rotating co-ordinate system are (Jeffery 
1922, Willis 1977): 

a~ 1 = [(b 2 - cE)/(b E + c2)] x E23 + R3E 

to 2 = [(c 2 -- aE)/(c 2 + aE)] X E31 + R13 (2) 

tO 3 = [(a 2 -- bE)/(a 2 + bE)] x E l2  + RE1 , 

where toi are the angular velocities of the ellipsoid 
around its own axes Xi. These equations describe the 
motion of an isolated particle; however, if the volume 
concentration of spheroids is small enough to preclude 
interactions between rotating grains, then the develop- 
ment of preferred orientation in multi-particle systems 
may be investigated. In the special case of spheroids 
(axial ellipsoids), the analytical solutions of equations 
(2) are known for simple flow regimes (simple shear, 
Jeffery 1922; pure shear, Gay 1968; axial flattening, 
Debat et al. 1975, Tullis 1976). For complex flows such 
as general non-coaxial strain regimes, the analytical 
solutions of equations (2) are unknown. In the case of an 
isotropic initial distribution of rigid particles, Willis 
(1977, p. 889) showed that, whatever the strain regime 
is, the resulting fabric for axial markers of a given shape 
K may be described by an ellipsoid, namely the fabric 
ellipsoid; for an isovolumetric strain, the density D of 
grain axes lying in a given direction, relative to a uniform 
distribution of axes orientations, is: 

D = 13, (3) 

where l is the radius of the fabric ellipsoid in this 
direction. For a strain regime defined by its velocity 
gradient tensor T' and acting over the specified time t, 
the fabric ellipsoid coincides with the strain ellipsoid for 
the hypothetical strain regime T* acting over the same 
time t (Willis 1977): 

Ti~ = ( r  x E;i ) + g'ij  , (4) 

E' and R' being the symmetric and antisymmetric parts 
of T'. Willis's model may be extended to heterogeneous 
populations of axial markers by dividing them into 
quasi-homogeneous subpopulations made of markers 
with close values of K. Subfabric ellipsoids may then be 
defined by assigning to each subpopulation an average 
value of K. The bulk density D in a given direction is 
(Fernandez 1984): 

D = × ( 5 )  

where fk is the proportion of subpopulation k and l, is 
the radius of the subfabric ellipsoid k in this direction. 

In the following, Willis's model has been used to 
compute the preferred orientation of axial markers in 
non-coaxial strain regimes with monoclinic symmetry. 
Fabric ellipsoids are defined by the orientation and the 
value of their principal axes A1, AE, A3 (with 
A 1 > A 2 > A3). They are plotted in a diagram (AE/A3) 1/2 
vs (Af fA3)  1/2, equivalent to Flinn's diagram for the strain 
ellipsoids (Flinn 1962). For heterogeneous populations, 
fabrics are illustrated by pole-figures (lower-hemisphere 
Schmidt projection). In these projections, the simple 
shear component of non-coaxial strain regimes (Figs. 2c 
& d) is orientated as follows: (a) the X~ axis is horizon- 
tal, E-W,  and (b) the X~-X~ plane is vertical, N-S. In 
order to visualize asymmetry, density profiles in the 
plane XI - X~ are displayed. 

FABRIC DEVELOPMENT IN SIMPLE SHEAR 
REGIME 

Motion  o f  an isolated spheroid  

The motion of rigid axial particles in a viscous fluid 
undergoing simple shear is described by the following 
equations (Jeffery 1922, Reed & Tryggvason 1974, 
Blanchard et al. 1979): 

tan ~0f = n x tan [(n x y) / (n  E + 1) + arctan((tan¢i)/n)] 

tanE0f = tan20i x [(n 2 × cos  2 ~i (6) 

+ sin E ~ i ) / ( n  E X cos  2 ~bf + sin 2 tpf)]. 

Here n is the axial ratio of the particle and y is the 
amount of shear; ¢ and 0 (radians) define the orien- 
tation of the revolution axis of the particle (Fig. 3), and 
subscripts i and f refer to the initial and final angles, 
respectively. Equations (6) indicate that the motion of 
an axial rigid particle in a simple shear regime is per- 
iodic; the amount of shear necessary to complete a 

\\ 

Low symmetry fabrics in magmatic rocks 
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Fig. 3. Azimuth ~ and plunge 0 of the revolution axis (thick line) of an 
axial marker in simple shear regime. 
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rotation of the particle is (Willis 1977, Fernandez et al. 
1983, Fernandez 1984): 

)'T,M = (2~r × (n: + 1))/n = 4Jr/(1 - K 2 )  1/2. (7) 

In the course of a rotation, the revolution axis de- 
scribes a closed orbit about X~. When ), = 7T,M, the 
particle returns to its original orientation (q~i = ~0f and 
0i = 0e). Perfectly linear or planar rigid markers (K = 1 
and K = - 1 ,  respectively) have a non-periodic motion 
and remain fixed when they reach the shear plane. 

Homogeneous population of  spheroids 

For a given value of K, the shape and the orientation 
of the fabric ellipsoid changes during progressive simple 
shear. According to Curie's Principle, one of the sym- 
metry planes of this ellipsoid must coincide with the 
symmetry plane X~ - X~ of the simple shear. Because 
simple shear is a plane strain, the intermediate axis of 
the fabric ellipsoid is parallel to X~ and is unity. Conse- 
quently the planes X~ - X~ and Ax - A3 coincide. The 
orientation of A1 in the plane Xi - X~ is specified by the 
angle a (Fig. 4). During progressive simple shear, the 
following evolutions are predicted (Fig. 5): 

(i) A1 axis rotates around X½ with a period (Fernan- 
dez et al. 1983): 

~'T,F = 2~/(1 - K2) lie. (8) 

The initial orientation for an infinitely small shear strain 
is a = - 4 5 ° ;  when 7J = ~,¢ = ~¢/(1- K2) 1/2, ct = 0 °, the 
foliation and the lineation (A1 - A2 and A1 for linear 
particles; A2 - A3 and A3 for planar particles) transpose 
the shear plane and the shear direction, respectively, ),¢ 
being referred to as the critical shear; 

(ii) At reaches a maximum value when the shear 
plane and the shear direction are transposed ()' = Yc; 
Fig. 5). Then A t decreases and for ~, = ~'T,F, the initial 
isotropic fabric is restored. This disorganization effect 
has been reproduced experimentally by Fernandez et al. 
(1983). 
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Fig. 5. Evolution of the value (full line) and orientation (dashed line) 
of the long axis A l of the fabric ellipsoid during simple shear; axial 

markers with K = -0.7. 

Heterogeneous population of  spheroids: development 
of  monoclinic fabrics 

The evolution of the fabric ellipsoid depends on the 
value of K: (a) the period )'T.F increases with the aniso- 
metry of the markers (that is with abs(K), the absolute 
value of K; see equat ion 8) and (b) the maximum value 
of At, for ), = 7o increases with abs(K). The  first re- 
lationship is of paramount  importance in the under- 
standing of monoclinic fabrics. Consider the case of a 
heterogeneous population divided into several quasi- 
homogeneous  subpopulations. For a given amount of 
shear, the subfabric ellipsoids have different orien- 
tations of their Az axes depending on the shape coef- 
ficient K, as illustrated in Fig. 6. Therefore  their sym- 
metry planes A 1 - A2 (and also A 3 - A2) do not coincide 
and the unique symmetry plane of the bulk fabric is the 
common plane At - A3 of the subfabric ellipsoids (Fer- 
nandez 1982). We conclude that simple shear acting 
upon heterogeneous populations of axial markers pro- 
duces monoclinic fabrics with a symmetry plane coincid- 
ing with the deformation plane X~ - X~. 

A simulation of monoclinic fabric associated with 
simple shear is presented in Fig. 7 (Fernandez 1984). As 
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Fig. 4. Orientation of the axis A t of the fabric ellipsoid for oblate Fig. 6. 
spheroids (a: At,s; a referred to axis X~) and for prolate spheroids (angle 

(b: At,L; a referred to axis Xi). 
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Family of curves giving the orientation of the fabric ellipsoid 
a) as a function of ~ for different shape coefficients K (from 

Fernandez et al. 1983). 
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Fig. 7. Monoclinic fabric resulting from a simple shear 0'  = 5) acting upon a heterogeneous population of axial markers; 
(a) distribution of the shape of the markers; (b) density profile along the symmetry plane of the fabric; and (c) monoclinic 

pole-figure. 

expected, the density profile in the plane X~ - X~ (Fig. 
7b) is asymmetric. The density of P.D.O. in the X~ 
direction is about unity (Fig. 7c); this may be predicted 
because simple shear is a plane strain. The resulting 
fabric compares with the type M1 of monoclinic fabrics 
listed in Fig. 1. 

Criteria to deduce the sense of shear 

The sense of shear may be inferred from the angular 
relationships between subfabrics corresponding to 
different minerals of a rock, for instance biotite and K- 
feldspar in granitoids (alternatively subfabrics corre- 
sponding to different families of the same mineral). Let 
us consider that biotites and K-feldspar megacrysts com- 
pose two quasi-homogeneous populations of oblate 
spheroids, biotites being more oblate than K-feldspars. 
In such a system, simple shear leads to the development 
of a heteroaxial bulk fabric, biotite and K-feldspar 
subfabrics displaying different orientations (Fig. 8a). 
Indeed the K-feldspar foliation plane (SKf in Fig. 8a) 
which corresponds to the plane A 2 - A3 of the subfabric 
ellipsoid, rotates faster (that is with a smaller period 
7T,F; see equation 8) than the biotite foliation plane (Sbt 
in Fig. 8a). Accordingly, as it is depicted in the right- 
hand sketch of Fig. 8(a), the sense of rotation in the 
X{ - X~ plane is from the biotite foliation plane to the 
K-feldspar foliation plane. This criterion may be ex- 
tended to monoclinic pole-figures because the density 
maximum of these diagrams is expected to be defined by 
the most anisometric markers (this point is illustrated 
below in the case of non-coaxial flattening). Accord- 
ingly, the sense of rotation in the symmetry plane of the 
pole-figure is from the density maximum (corresponding 
to highly anisometric markers) to the low density flank 
of the asymmetric profile (corresponding to markers 
with low anisometry) (Fig. 8b). 

The criteria discussed above are valid only if all the 
subfabrics involved are still in their first cycle of evol- 
ution (that is if ), < 2~/(1 - K2in) it2, K~i n being the 
shape coefficient of the least anisometric markers of the 
studied population). The reader is referred to Blumen- 

feld & Bouchez (1988) for a comprehensive review of 
shear criteria in granites and migmatites. 

Simple shear and triaxial ellipsoids 

Using a numerical approach, Freeman (1985) com- 
puted the motion of triaxial ellipsoids in simple shear 
regime and showed that the orbits the markers describe 
about X~ are not closed (i.e. when ~bf = ~i, 0t ~ 0i). For 
multi-particle systems, an insight in the fabric symmetry 
is offered by considering the case of markers having one 
of their symmetry planes coincident with XI - X~. If we 
consider the density of orientation of the long axis of 
prolate spheroids (with axes 2a > 2b > 2c) in the 
X~ - X~ profile, two different behaviours are predicted 
depending on which particle axis coincides with X~: 

(i) if X3 coincides with X~, the motion of the long axis 
is described by the equation (Willis 1977): 

l•,kf 1 1  a Is iS. b t 

Fig. 8. Criteria to deduce the sense of shear: (a) heteroaxial biotite 
(bt) and K-feldspar (kf) subfabric~ resulting from simple shear (the 
section coincides with the plane X~ - X~ of the deformation); the 
sense of rotation is from the biotite foliation plane ~ to the K-feldspar 
foliation plane Skf; (b) sense of shear deduced from the polarity of 

monoclinic pole-figures (see text for further explanations). 
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Fig. 9. Simulated fabric resulting from a simple shear (y = 3) acting 
upon a homogeneous population of triaxial markers (a/b = blc = 1/3); 
the shear plane is horizontal and the sense of shear is indicated by the 
arrow. The motion of the markers defining an initial isotropic distri- 
bution has been computed by numerical treatment;  the density con- 
tours describe the final distribution of short axes (from Fernandez 

1984). Contours: 1, 2.5 and 4%. 

e) 3 = d~)/dt = 0.5 x 9) x (1 + K3 x cos 20), (9) 

with Ks = (a 2 - be)/(a 2 + b e); the corresponding period 
of rotation is (Fernandez et al. 1983): 

Y-r.M = 4zd(1 - K2)1/2;  (10) 

(ii) if X 2 coincides with X~, the following equations 
can be written: 

to2 = dJp/dt = O.S x ~ x ( l + K2 × cos 2~p ) ( l l )  

V'r,M = 4zt/(1 - K~) t/2, (12) 

with/(2 = (a  2 - c2) / (a  2 + c2).  

For a given amount of shear, the two populations of 
particles will develop density maxima with different 
orientations, contributing to the development of an 
asymmetric density profile. A fabric simulated for tri- 
axial ellipsoids in simple shear regime is presented in 
Fig. 9 (Fernandez 1984). Its monoclinic symmetry is not 
well-defined, perhaps because of the low amount of 
shear (y- -3) .  However this two-maxima diagram is 
similar to the monoclinic fabric M2 displayed in Fig. 1. 

RELATIONSHIPS BETWEEN THE GEOMETRY 
OF NON-COAXIAL STRAIN REGIM.ES AND THE 

SHAPE OF THE RESULTING MONOCLINIC 
FABRICS 

According to Curie's Principle, the knowledge of 
fabric symmetry constrains the strain regime symmetry. 
For a specific kind of fabric symmetry, additional con- 
straints result from the geometry of the pole-figures. 
This will be demonstrated for monoclinic fabrics by 
considering the special case of axial markers. 

As concluded above, fabrics simulated for simple 
shear acting upon heterogeneous populations of axial 
markers (Fig. 7c) compare with type M1 of natural 
monoclinic fabrics (Fig. 1). Other types of monoclinic 
P.D.O. have been encountered in igneous rocks, such as 
the tadpole-shaped M4 diagrams of Fig. 1. By applying 
the same reasoning as for simple shear and M1 pole- 
figures, we may conetude that the plane M coincides with 
the unique symmetry plane of a non-coaxial strain 

regime. The X; direction normal to M cannot be a 
non-deformation direction because density of orien- 
tation along X~ is less than unity (Fig. 1). For M4 
diagrams defined by polar projection of planar elements, 
X~ corresponds to an extension direction. Thus, devel- 
opment of tadpole-shaped monoclinic fabrics for planar 
markers implies the combination of a simple shear 
component and a coaxial component satisfying the two 
conditions: (a) the X~ axis of simple shear corresponds 
to an extension direction of the coaxial component and 
(b) the bulk symmetry is monoclinic. There are an 
infinite number of such combinations; two examples are 
studied below because they lead to contrasting geologi- 
cal implications: 

(i) non-coaxial flattening; the corresponding flow 
geometry is illustrated in Fig. 2(d); for the sake of 
simplicity, we shall consider the case of coincident shear 
plane and flattening plane; however, the results pre- 
sented below (specially those concerning the develop- 
ment of M4 pole-figures) may be extended to more 
general monoclinic non-coaxial flattenings (Laporte 
1987); 

(ii) axial flattening fol lowed by simple shear (poly- 
phased history). 

Fabric development in non-coaxial flattening regimes 

The investigated regime is defined by the velocity 
gradient tensor: 

0.085 0 -Y.170 0.085 
T ' =  ~ 0 

m 

Detailed results are presented below for ~) = 0.7; vari- 
ations of ~/T~a are briefly considered because this ratio 
envisions the relative importance of simple shear and 
axial flattening in the non-coaxial regime. 

Case o f  a homogeneous population. During the course 
of a non-coaxial flattening regime, the shape and the 
orientation of the fabric ellipsoid evolve in a cyclic way. 
Figure 10 illustrates these evolutions for a population 

10 1 

4 0 ° 

2  _12 
-45* 

0 ;~ 4 6 '~ '10 
Y Y'r,~ 

Fig. 10. Evolution of the value (full line) and orientation (dashed 
line) of the long axis AI of the fabric ellipsoid during non-coaxial 
flattening; axial markers with K = - 0 . 7  (see text for further expla- 

nations). 
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Fig. 11. Evolution of the shape of the fabric ellipsoid during non- 
coaxial flattening (full line); comparison with simple shear regime 

(dashed line): numbers indicate the amount of shear (~ x t). 

made of planar particles with K = -0 .7 .  The amount of 
strain is specified by the parameter 7 = 7 x t. 

(i) The variations of A1 are cyclic but non-periodic 
(Fig. 10): indeed the successive maxima of the A1 - Y 
curve increase and the initial isotropic fabric is not 
restored at the end of each cycle. The duration of one 
cycle is 7T,F = 9.41 (the analytical expression is un- 
known). 

(ii) The orientation of the fabric ellipsoid is fully 
specified by the angle a of A 1 axis in the plane X~ - X~ of 
the simple shear component (see Fig. 4). The curve 
a - 7 is periodic with a period YT,F = 9.41 (Fig. 10); its 
two boundaries ami n = 36  ° a n d  area x = + 5 4  ° differ from 
the equivalent boundaries -45  ° and +45 ° observed in 
simple shear regime (Fig. 5). 

(iii) The shape variations of the fabric ellipsoid are 
displayed in Fig. 11: all kinds of ellipsoids are expected 
in a non-coaxial flattening regime. For y = 6.5, the 
ellipsoid is a prolate spheroid whereas it is an oblate 
spheroid for y = k x 7T,F, where k is an integer. For 
comparison the shape variations of fabric ellipsoids in 
simple shear are also presented (Fig. 11). 

When the ratio ~,/T~2 is increased, the same general 
evolutions are observed except that: (a) the 'period' YT,F 
decreases, approaching the asymptotic value 
2zr/(1- g 2 )  1/2 ( = 8 . 8 ,  for K = -0 .7 ) "  of simple shear 
regime, and (b) the boundaries ami, and amax approach 
-45  ° and +45 °, respectively. 

Influence of the shape coefficient K---case of hetero- 
geneous populations. The duration YT,F of the one cycle 
of evolution decreases when the absolute value of K 
approaches 0. Consequently for a given amount of 
strain, subfabric ellipsoids corresponding to various K 
will have different orientations of their A1 axes. So 
monoclinic fabrics are expected when the population is 
morphologically heterogeneous. The example of a simu- 
lated monoclinic pole-figure is presented in Fig. 12(a), 
with the corresponding X ~ -  X~ density profile (Fig. 
12b). The tadpole-shaped pole-figure (Fig. 12a) is simi- 
lar to the M4 fabrics of Fig. 1. The exact shape of the 
pole-figures depends on the strain regime, the amount of 
strain and the composition of the heterogeneous popu- 
lation of axial markers (Laporte 1987). 

In Fig. 12(c), the asymmetric density profile of Fig. 
12(b) is decomposed into symmetric profiles corre- 
sponding to the three homogeneous classes of markers. 
It appears that the density maximum of the tadpole- 
shaped fabric is defined by the highly anisometric 
markers (K = -0.78),  markers with lower anisometry 
(mainly K = -0.68)  composing the low density 'tail of 
the tadpole'. Consequently, as in the case of simple 
shear (Fig. 8b), the polarity of a tadpole-shaped fabric 
may be used to infer the sense of shear of the strain 
regime. 

Fabrics resulting from a polyphased strain history: 
example of a simple shear acting upon an axial 
flattening fabric 

Only the case of parallel flattening and shear planes is 
considered in the following (for the case of oblique 
flattening and shear planes, see Laporte 1987). For 
homogeneous populations of axial markers, the result- 
ing fabrics are described by ellipsoids (Willis 1977, 
p.890). In a given direction d, the density of orientation 
D2,a produced by a simple shear acting upon an isotropic 
population is computed using Willis's model. Let d' be 
the initial orientation--before simple shear--of an axial 
marker having the final orientation d; knowing d, d' may 
be calculated using equation (6). Then the bulk density 
Dd along d, resulting from the polyphased strain history, 
is given by the relation: 

a b D% C O~ 

-0.78 I" 

~'X'21 ' , 40. 10 
8 

_ J ..... 5 / \  

a 90" -go" a 90" 

Fig. 12. Monoclinic fabric associated with non-coaxial flattening (y = 7.7; the heterogeneous population is made of 
markers with K = -0 .58,  -0 .68  and -0 .78 in the respective proportions 0.25, 0.50 and 0.25); (a) tadpole-shaped pole- 
figure(contours: 1,2, 3, 5 and 12%; maximum - 21%); (b) density profile X~ - Xj for the bulk fabric; (c) decomposition of 
the asymmetric profile (b) into its symmetric components (m gives the orientation of the density maximum for K = -0.58).  
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Fig. 13. Simple shear acting upon an axial flattening fabric: evolution 
of the shape of the fabric ellipsoid for shortening percentages of 75% 
(full line) and 85% (dashed line) during simple shear (g increasing 

from 0 to 4.28); axial markers with K = -0.68. 

D d = D2, d X Dl,d, , (13) 

where D 1,d, is the density of orientation along d' ,  result- 
ing from the first phase of axial flattening; DEal, is 
computed from the equations describing the relation- 
ships between fabric ellipsoid and strain ellipsoid in 
coaxial strain regimes (Fernandez 1984). Below, the 
amount of axial flattening is specified by the shortening 
percentage R in the X~ direction: for example,  a shorten- 
ing of 75% means that the final length along X~ is a 
quarter of the initial length. In order  to draw pole- 
figures, the density Dd is computed in a set of given 
directions. A more accurate knowledge of the fabric is 
gained by determining the value and the orientation of 
the principal axes of the fabric ellipsoid. The bulk 
symmetry of the strain history is monoclinic; the sym- 
metry plane X~ - X j  coincides with one of the symmetry 
planes of the fabric ellipsoid: so two of the principal axes 
may be determined by calculating the minimum and the 
maximum densities of the density profile X~ - X~; the 
orientation of these two axes is computed with an 
accuracy of _+ 1 °. The third principal axis of the fabric 
ellipsoid coincides with axis X~. 

Fabric development for homogeneous populations. 
During simple shear, the shape of the fabric ellipsoid 
evolves as indicated in Fig. 13 for K = - 0 . 6 8 ;  this 
evolution depends strongly on the shortening percent- 
age R before simple shear (Fig. 13). Figures 14 and 
15 show the variations in value and orientation of A] 
axis for shortening percentages of 75 and 85%. The 
curves A1 - 7 and a -  7 display the period 
7T,F = 2~r/(1 -- K2) t/2, already derived in simple shear 
regime; when 7 = 7T,F, the flattening fabric is restored. 
Two contrasting behaviours of A1 (and consequently of 
the foliation S, parallel to A2 - A3) are shown in Fig. 15: 

(i) Behaviour I: for high shortening percentages 
(R = 85%), the foliation S completes a full rotation 
around X~ when the amount  of shear increases from 0 to 
7T,F; for 7 = 7T,F/2, S is normal to the shear plane 

- 

(ii) Behaviour II: for lower shortening percentages 
(R = 75% or less; Lapor te  1987), the variations ofA 1 are 
restricted to a limited interval of the angle a 
( - 21  ° < a < + 2 1  ° for R = 7 5 % ) ;  for 7=TT,F/2,  the 
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Fig. 14. Simple shear acting upon an axial flattening fabric: evolution 
of A1 during simple shear for initial shortening percentages of 75% 

(full line) and 85% (dashed line). 

angle a equals 0°: the foliation S is parallel to the plane 
- xL 

The minimum value of axial flattening necessary for 
the fabric ellipsoid to display the first kind of behaviour 
has been computed for various shape coefficients K (Fig. 
16). 

Case of  heterogeneous populations. Two monoclinic 
fabrics related to p o l ~ h a s e  strain histories are pre- 
sented in Figs. 17 and 18 (for the same heterogeneous 
population (Table 2) and amount  of shear (7 = 3.2)). In 
Fig. 17, the shortening percentage is 75%: the X~ - X~ 
density profile shows a poor!y-defined asymmetry. In 
Fig. 18 (R = 85%),  the X{ - X~ density profile has a 
well-defined asymmetry and the pole-figure is very simi- 
lar to the M4 diagram of Fig. 1. The origin of the 
discrepancies between Figs. 17 and 18 can be  explained 
by referring to Fig. 16. For  R = 85%, subfabric ellip- 
soids with K > -0 .8 3  are able to complete a full rotation 
around X~; thus, for a given amount  of shear, ellipsoids 
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Fig. 15. Simple shear acting upon an axial flattening fabric: evolution 
of the orientation a of A1 axis during Simple shear for initial shortening 

percentages of 75% (full line) and 85% (dashed line)_ 
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-:8 K 
Fig. 16. Diagram 21 - K delimiting the fields for the behaviours I and 
II of the AI axis of the fabric ellipsoid (see text for explanations). 21 is 
the long quadratic axis of the strain ellipsoid for the first phase of 

flattening. )-i = 1/(1 - R); (a) R = 85%; (b) R = 75%. 

corresponding to various K values may have markedly 
different orientations (Table 2). For R = 75%, fabric 
ellipsoids with K less than about - 0 . 4  plot in the field II 
of Fig. 16; accordingly, the A1 axes of the subfabric 
ellipsoids are close to one another (Table 2) and the 
monoclinic symmetry of the bulk fabric is not distinct. 

DISCUSSION AND CONCLUSIONS 

Models describing the behaviour of rigid markers 
suspended in a slowly deforming ductile matrix (Jeffery 
1922, Willis 1977) have been used to specify the signifi- 
cance of various kinds of magmatic fabrics. As predicted 
by these models, the characteristics of P.D.O.  are 
strongly dependent on: (a) the strain regime and the 
magnitude of the finite strain and (b) the shape of the 
markers (strictly the morphological composition of the 
population of markers). Several restrictive conditions of 
Jeffery's model have to be remembered: (a) the density 
contrast between the rigid marker and its matrix is 
negligible; (b) the marker is ellipsoidal and its shape 
does not evolve during motion; (c) the ellipsoid is 
isolated: it does not interact with neighbouring grains; 
and (d) the deforming fluid has a Newtonian behaviour 
(Willis's model has a somewhat broader field of appli- 

cation particularly because it may be extended to more 
general ductile behaviour; however the useful notion of 
fabric ellipsoid is restricted to axially symmetric 
markers). Obviously premises (a)--(c) are never strictly 
realized in natural conditions. For instance interactions 
between neighbouring grains are expected when the 
crystal content of the deforming magma is high. Conse- 
quently quantitative informations which might result 
from the statistical analysis of natural fabrics, have to be 
considered with caution. However the qualitative re- 
sults, particularly the relationships between fabric shape 
and strain regime geometry,  remain valid even though 
the restrictive conditions of the theoretical models may 
not be fully satisfied. 

Jeffery's and Willis's models associated with Curie's 
Principle lead to the following conclusions. 

(i) Low symmetry fabrics result from non-coaxial 
strain regimes. More precisely, monoclinic fabrics are 
associated with monoclinic non-coaxial strain regimes 
such as simple shear. Triclinic fabrics are predicted to 
result from non-coaxial strain regimes with triclinic 
symmetry. 

(ii) High symmetry fabrics may result from coaxial as 
well as non-coaxial strain regimes. Indeed, the latter 
lead to highly symmetric fabrics when they act upon 
homogeneous populations of axial markers (Willis 
1977). However, morphological homogeneity and axi- 
symmetry of the markers are not realistic assumptions so 
that natural fabrics resulting from non-coaxial strain 
regimes should commonly have a low symmetry. Unfor- 
tunately, the corresponding pole-figures may have a 
poorly-defined asymmetry (e.g. Fig. 17), makingthem 
difficult to discriminate from high symmetry diagrams. 
Consequently a detailed scrutiny of natural pole-figures 
is required and the principles we outlined should not be 
applied to fabrics with an ill-defined symmetry. 

(iii) Monoclinic fabrics contain precious information 
about the deformation they result from: (a) the plane 
Xi - X~ of the non-coaxial strain regime (Figs. 2c & d) 
coincides with the symmetry plane of the monoclinic 
pole-figure; (b) the sense of shear may be inferred from 
the polarity of the pole-figure as illustrated in Fig. 8(b) 
(complements and limitations to this criterion are given 
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30* 90" 

Fig. 17. Monoclinic fabric with poorly-defined asymmetry associated with a polyphased strain history: axial flattening 
(R = 75%) followed by simple shear (y = 3.2); the heterogeneous population of axial markers is defined in Table 2. 

(a) Pole-figure with contours 1, 2, 3 and 5%; maximum = 6.7%. (b) Density profile X~ - X~. 
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Fig_ 18. Monoclinic fabric with well-defined asymmetry; same conditions as for Fig. 17 except the initial shortening 
percentage R = 85%. (a) Pole-figure with contours 1, 3, 5 and 8% ; maximum = 11.3°/,,. (b) Density profile X~ - X~. 

above); and (c) various types of non-coaxial strain 
regimes or strain histories may be distinguished by the 
geometrical characteristics of the preferred orientations 
they produce. This was established above by comparing 
M1 and M4 monoclinic fabrics (Fig. 1): M1 fabrics are 
associated with simple shear whereas the development 
of M4 fabrics involves the combination (or the suc- 
cession) of a coaxial deformation and a simple shear. 

Finally, quantitative information may be drawn from 
the statistical analysis of magmatic fabrics. For instance, 
P.D.O. defined by K-feldspar megacrysts have been 
used to quantify the strain recorded in porphyroid grani- 
toids (Fernandez & Laboue 1983, Fernandez 1984, 
Laporte 1987). Once the geometry of the strain regime 
has been inferred from the characteristics of the result- 
ing fabric, the magnitude of the finite strain may theore- 
tically be estimated knowing the shape of the markers. 
In simple shear regime, the amount of shear may be 
deduced from: (a) the value of the density maximum of 
the fabric; (b) the angular mismatch between two sub- 
fabrics, measured in the symmetry plane X~ - X~ of the 
strain regime (Figs. 6 and 8a); and (c) the angle between 
the foliation plane of the fabric and the shear plane when 
the orientation of the latter is known (see Fig. 6 and 
Blanchard et al. 1979). 

For general non-coaxial strain regimes, it is not poss- 
ible to get a full quantitative description of the strain 
from a resulting fabric. A major hindrance is that the 
same pattern of P.D.O. may be associated with different 
strain regimes or histories (see above the case of M4 
monoclinic pole-figures). Consequently, external con- 
straints are first required to select the right model. For 

Table 2. Orientation of the A l axis of the subfabric 
ellipsoids for the bulk fabric displayed in Fig. 17 
(column a 1, R =  75%, ~2= 3.2) and in Fig. 18 
(column a2, R = 85%, y = 3.2); the columns K and 
% define the composition of the population of rigid 

markers 

a l  (/2 
K % (o) (o) 

-0 .48 10 32 65 
-0.58 20 27 51 
-O.68 40 21 37 
-0 .78 20 14 24 
-0.88 10 6 11 

instance, M4 pole-figures of the Ile-Rousse pluton, 
northwestern Corsica. have been ascribed to a poly- 
phased history involving the succession flattening/sim- 
ple shear (Laporte 1987). This conclusion was based on 
the following information: (a) the existence of flattening 
fabrics with axial symmetry, in addition to M4 monocti- 
nic fabrics; (b) the structural symmetry at the scale of the 
pluton; and (c) the pancake shape of the basic microgra- 
nular enclaves in the granitoids. According to our calcu- 
lations, the development of Ile-Rousse M4 fabrics 
required shortening in excess of 75% and shears up to 4 
or 5. Consistently, shortenings estimated from the axial 
fabrics and the oblate enclaves locally exceed 75%. 

As illustrated by the example of Ile-Rousse pluton, it 
may be concluded that, combined with other structural 
approaches, statistical analysis leads to qualitative as 
well as quantitative information on the deformations 
responsible for the development of magmatic fabrics. 
Such information is required to decipher the complex 
history of emplacement and deformation of igneous 
bodies. 
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